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I INTRODUCTION

Many theoretical (analytical and numerical) and experimental methods for

evaluating stress intensity factors are now available; they have been described

in several reviews, for example, Refs I, 2 and 3. Techniques involving Green's

functions have been used for determining stress intensity factors of cracks under
complex loading conditions. These techniques, which offer scope for further

development, are discussed in this paper in relation to two areas where they are

of particular use. The first is in the systematic use of a known Green's function

to develop one for a more complex configuration. The second is the development of

engineering methods of evaluating stress intensity factors by approximating

Green's functions.

Some applications are described of these techniques to problems of general

engineering interest such as cracks at loaded holes and cracks in stiffened

structures. The Green's functions developed give an insight into the importance

of different types of loading and structure and demonstrate the versatility of the

technique. Some of the more useful Green's functions are discussed in section 5.

2 BASIC PRINCIPLES OF GREEN'S FUNCTIONS

The Green's function, first postulated by George Green in 1828, is defined

as the response of a iystem to a standard input. The standard input is usually in

the form of an impulse. Stedman 4 has reviewed the use of Green's functions in

many fields of mathematical physics. Some examples of classical Green's functions

are: the voltage output, as a function of time, of an electronic circuit in

response to an input voltage pulse; the dynamic response of a medhanical system

set in motion by an impulsive blow; the stress field produced in an elastic body

in response to a force acting at a point in the body. If the body in the last

example contains a crack, the stress intensity factor at the crack tip which

arises in response to the point force may be considered as a special case of a

Green's function. The important property of these functions is that, when suit-

ably defined, they contain all the essential information about the system. They

can thus be used to obtain the response of the system to any input by considering

it as being composed of large numbers of small impulses. The total response is

the sum of all the individual responses due to each input impulse acting

separately. For the Green's function representation to be valid the system must

have the following properties:

(a) causality - if there is no input there is no response;

(b) invariance - the response to a given input is always the same;
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(c) linearity - if the response to input I is R and the response to 12

is R2  then the response to II + 12 is RI + R2

These three conditions lead to the following result for the response R(n)

to a general input I(n)

R(n) f I(n)G(n - n')dn' (I)

where G(O - ') is defined as the Green's function and is a function of the

differences n - n' . The variables n and n' may represent positions and/or

time.

3 STRESS INTENSITY FACTORS AS GREEN'S FUNCTIONS

cracked sheet containing a crack of length 2a which has localized forces acting

at points on its surfaces (see Fig I). If the forces act normal to the crack

faces, ie a force per unit thickness of P acting on one face and an equal and

opposite force acting on the other face, then the opening mode stress intensity

factor KI at tip A is given by

K1  = a [ - ] P G(x0 ) (2)

where x0  is the distance of the point of application of the force from the

centre of the crack. If forces Q act tangentially to the crack faces then the

sliding-mode stress intensity factor KII at tip A is given by

K P, + x0 -1-GXo 3
II - a 0)(3

For tip B at the other end of the crack the stress intensity factors are

obtained from equations (2) and (3) by replacing x0 with - x0 . The function

G(x0 ) in equations (2) and (3) can be used as a Green's function to obtain

stress intensity factors for cracks subjected to boundary pressures acting on the

crack faces. If a pressure p(x), - a 4 x 4 a , acts normal to the crack faces

the stress intensity factor is given by
A
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a

I f p(x)G(x)dx (4)

-a

For the case of p(x) = p (a constant), equation (3) gives the well known result

KI = pv7a . A similar result can be obtained for a distribution of shearing

forces on the crack. For symmetrical point forces on the crack faces the pressure

distribution can be represented by p(x) = P6(x - x ) where 6(x - xo) is the
00

Dirac delta function. Substitution of this expression for p(x) reduces

equation (4) to equation (2).

Equation (3) can be used together with an important result derived by
6Bueckner , to obtain opening mode stress intensity factors for cracked bodies

subjected to arbitrary forces on their boundaries. Bueckner's result is that the

stress intensity factor for a crack in a body subjected to external forces is

identical to that for a similar crack, subjected to internal pressure in a similar

body which has no external forces acting on it. The internal pressure p(x)

acting in the crack is equal to the stress that would exist normal to the crack-

line along the crack-site in the uncracked body subjected to the external forces.

An analogous procedure exists for shear stresses and the calculation of sliding-

mode stress intensity factors. This principle is illustrated schematically in

Fig 2. For many bodies and external force distributions the stresses along the

crack-site may be difficult to evaluate. Often Green's function techniques can be

used in these evaluations. Recently Nisitani7 has derived stress-field Green's

functions for different bodies, so that the internal stress distribution can be

derived for any externally applied forces on these bodies.

4 SYSTEMATIC USE OF GREEN'S FUNCTIONS

Known Green's functions for both stress fields and stress intensity factors

can often be used systematically to build up stress intensity factors for unsolved

crack problems. Some examples are shown in Fig 3 where GK and G refer to

Green's functions which are associated with stress intensity factors and stress

fields respectively. The Green's function defined in equation (3) is a special

case of that derived by Erdogan8 for a crack in a sheet with an arbitrary force

anywhere in the sheet. The stress-field Green's functions are also available8 for

this cracked configuration. The ones required are defined in Fig 3b. Hartranft

and Sih 9 have obtained the stress intensity factor for a crack of length a in a

half-plane, the crack being subjected to two equal and opposite forces (per unit

o thickness) P , normal to the crack face and a distance x0 from the edge of the
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sheet (see Fig 3c). An iterative method was used which required a knowledge of

the Green's functions given in Figs 3a&b. The initial solution required was that

of a crack of length 2a with point forces ±P at x = ±x ; the Green's0

functions for this configuration are obtained from Fig 3b, ie

P K K 1

K [ L(xo;a) + GB(-xO;a ' (5)

a a K

x(Y,O) pB(XoY;a) + GB(-x0 ,Y;a 2PG N(•yO = PGxoY;a) (6)

T T

Ty(y,O) =P (XoY;a) + G(-x0Y;a = 0 (7)
,PVLGBxoYa B~x~tI

The simplifications introduced into equations (6) and (7) follow from

symmetry considerations.

The configuration described in Fig 3d can be solved directly from equation

(4) by using the above solution. Because of Bueckner's principle6 p(x) can be

replaced by a (x,0) , defined in Fig 3a, and G(x) can be replaced by GK(xo;a)
y 10 0

defined in Fig 3c. This procedure has been used by Rooke and Jones to obtain

the desired solution. Fig 3f shows a crack of length a in a half-plane which

is subjected to a force per unit thickness of P acting at the point (xoYo)

The stress intensity factor for this configuration can be obtained in a similar

manner to that above from the Green's functions defined in Fig 3c&e. The result
K

GF(xoy 0 ;a) can then be used to derive the stress intensity factor for any

arbitrary distribution of forces in the half-plane. All the configurations in

Fig 3 show opening mode stress intensity factors resulting from forces normal to

the crack or normal to the sheet edge. The procedures outlined are also valid

for arbitrary forces which lead to both opening and sliding-mode stress intensity

factors.

Stress intensity factors for cracks subjected to a constant pressure on

part of the crack surface are closely related to Green's functions. A particular

case of this is illustrated in Fig 4a where a crack of length 2a is subjected

to a constant pressure. p(x) - p0  between xO  x x . Symbolically p(x)

is defined as

p(x) - Po[H(x - Xo) - H(x - xl)] (8)
0. .

...... .. .. ..... .. .. ...
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where H(x - x0) is the Heaviside step-function defined by

H(x -x) = 0 x<x Ol (9)

I x _ x0

The Heaviside step-function and the Dirac delta-function are simply related thus:

d H(x -) = 6(x - x) (10)

From equation (4) it follows that the stress intensity factor for the configura-

tion is given by

a xI
1 0

KI  If H(x-x)-H x )]G(x)dx = - G(x)dx (1I)

-a x0

where G(x) is defined by equation (2); the second integral in equation (ll)

follows from the properties of H(x) given in equation (9). This result can be

used to obtain an approximate stress intensity factor for a crack subjected to an

arbitrary pressure distribution. The pressure distribution is approximated by a

series of strips of constant pressure as illustrated in Fig 4b. The principle of

superposition allows the contributions from each pressure strip to be added

together. Thus

x I  x 2  x n

K G(x)dx + _ G(x)dx + .. + _n G(x)dx (12)

x0  xI  xn- 1

where pj is the value of p(x) at the mid-point of the strip between x I

and x.

If each strip is of such a width that p(x) does not vary much across it,

then equation (12) may be written

x I  x 2  x n

KI = 'a p(x)G(x)dx + p(x)G(x)dx + ... + p(x)G(x)dx .(13)

Mx 0  xl xn0 0 x Xn-1
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By adding the integrals together, equation (13) becomes

x
n

KI = f p(x)G(x)dx , (14)

x0

the right-hand side of which is of the same form as equation (4); for a distribu-

tion of pressure over the whole crack-face x0 is - a and xn is + a . Thus

equation (12) will give results which approximate to those of an exact calcula-

tion using Green's functions, providing that p(x) does not vary much in any

strip. The number of strips can be increased indefinitely until the stress

intensity factor reaches the required accuracy.

5 AVAILABLE GREEN'S FUNCTIONS

There are many Green's functions now available. The more important of

these are shown in Fig 5. Most are for two-dimensional configurations and these

enable a wide variety of problems to be analysed. The Green's functions shown

are mainly for Modes I and II as these are in practice more important. Complete

details of the functions together with references to the original work are given

in the references cited for each configuration. Many other special cases of the
11-13Green's functions in Fig 5 have been determined , and it is possible to

construct others by taking limits and by superposition. Soluticns have also been

determined I1 - 13 for bands of pressure on the crack faces and, as shown by

equation (14), these step-function solutions can be superimposed to obtain
arbitrary distributions on the crack surfaces.

6 SIMPLE METHODS EXPRESSED AS GREEN'S FUNCTIONS

Several simple methods 14- 18 have been proposed for determining stress

intensity factors, particularly for the important case of cracks from holes or

notches. These methods have been developed by comparing results with known

stress intensity factors in particular cases. It will now be shown that these

simple methods are not arbitrary, but arise from approximations to the Green's

function. Results obtained from using them will be compared with those derived

by Hsu and Rudd 19 who used a more accurate Green's function. Hsu and Rudd

determined stress intensity factors for a symmetrical pair of opposing point

forces acting on each of two radial cracks of length Z at a hole of radius R

(see Fig 6). They used finite element methods for x/X < 0.9 and a limiting

expression for x/t > 0.9 . The Green's function given by Hsu and Rudd is shown .
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(solid curves) in Fig 7 for three values of Z/R = 0.2, 1.0 and 3.0 . Two fea-

tures of the Green's function are of special interest; it is a weak function ofI/R and it tends to infinity as the point force approaches the crack tip.

Green's functions for an edge crack
9'1 1 depicted in Fig 8 and an embedded crack

8

depicted in Fig 9 are also shown in Fig 7.

9
The Green's function for the edge crack is given as

2 2 r2
G (X) 1 + (I - X) 0.2945 - 0.3912X

+ 0.7685X4 - 0.9942X6  0 0.5094X8]I (15)

and for the embedded crack from equation (2) by superposition as

G (x) = (16)

where X = x/X

The Green's function of Hsu and Rudd lie close to equations (15) and (16) for

X - I . Shah has developed a method'7'18 by considering the limiting behaviour

of known stress intensity factors for cracks at holes. When expressed as a

Green's function the method reduces to using

2Mf

G (X) = (17)s /1 _X X 2

where Mf = 1.0 + 0.12 X - ; X < 0.3

SX>0.3

This Green's function is also shown in Fig 7 and can be seen to be a reasonable

approximation to that of Hsu and Rudd. The free surface correction factor Mf

was introduced by Shah to take approximate account of the stress-free hole-

boundary which affects the stress intensity factor at short crack lengths. The

limiting value of Mf (- 1.12) is the value obtained for a crack at the edge of

a uniformly stressed half-plane. The approximate Green's function proposed by

Shah is sufficiently close to the solution of Hsu and Rudd to make it useful for

many applications; its use does not depend on the notch shape and a closed form

n expression is convenient in numerical calculations.LL
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The approximate methods 14 - 16 can also be expressed as Green's functions

thereby establishing their general application to cracks at holes and notches.

The Green's function G (x) for a point loaded crack at a notch tip as shown in

Fig 1Oa is shown schematically in Fig 10b. Three approximations to G X) will

be examined, these are also shown in Fig lOb and are defined as

G (x) = 1.12nZ6(x) , (18)

G2(x) = 1.12vZ6(x - ) (19)

and

G 3x) = 1.127 [H(x) - H(x - Z)] (20)

where 6(x) is the Dirac delta-function, H(x) is the Heaviside step-function.

It will now be shown that the above Green's functions are equivalent to well

known results.

From equation (4) the stress intensity factors resulting from the Green's

functions in equations (18) to (20), with o(x) , the stress over the crack site,

set equal to p(x) are given by:

for equation (18)

K I I (x)!.12woa(x)dx (21)

0

= 1.12o(0) r ,; (22)

for equation (19)

K 2) = - o(x)1.12,rk6(x - Z)dx (23)
I AR

0

= 1.12o(9)vi- ; (24)

and for equation (20)

k
K1 (3) j (x)1.27 H~x) -H(x Z) dx (25)

0



= .12v o(x)dx (26)
0'

= 1.12o ma A, (27)

16 14

Equations (22) and (24) are the familiar maximum stress and crack tip stress

approximations respectively and equation (27) is the mean stress method suggested
15

by Williams and Isherwood ; several applications of these methods have been
3

considered elsewhere

Results for the case of two equal length, diametrically opposed, radial

cracks at a hole in a sheet subjected to a biaxial tensile stress a are shown

in a table in Fig 11. For this case

C(x) = 0 I + -- (28)

The results of Hsu and Rudd 19 as determined by Whitehead 20 are seen to be in

close agreement with the accurate solution of Rooke and Tweed 21; errors for each

approximation are shown in parenthesis. The tip stress equation (24), results in

errors of about 3% showing that the Green's function Gl(x) is a satisfactory

approximation to G0 (x) . This is because the major contribution to the stress

intensity factor comes from the near tip stresses; this contribution is largely

accounted for by the delta function representation of the Green's function. The

maximum stress approximation is only accurate in the limit of zero crack length

as only under these conditions is the delta function S(x) a reasonable approxi-

mation to G (x) . However despite this limitation the maximum stress method is

useful in that it gives an upper limit on the stress intensity factor. Further-

more it is only necessary to know the stress concentration factor for the notch

rather than the entire stress field over the crack-site in the uncracked body.

The mean stress method also over-estimates the stress intensity factor but in

this case it is necessary to know the entire stress field over the crack-site and

to determine its mean value at each crack length. Smith 22 has made use of the

mean stress and the properties of Green's functions to establish bounds on stress

intensity factors of edge cracks when o(x) is a monotonically decreasing

function and o(k) > 0
L°
0n
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7 APPLICATIONS OF GREEN'S FUNCTIONS

The usefulness of Green's functions in fracture mechanics will now be

illustrated by three examples. These are chosen to illustrate the wide variety

of practical problems which may be easily and accurately solved.

7.1 Effect of pin pressure distribution on a crack at a hole

In this example it is necessary to give a different interpretation to p(x)

and G(x) in equation (4) since in order to solve these problems we need the

Green's function which gives the response to a force acting at an arbitrary

position in the body (in this case on the hole boundary) rather than that due to

a force acting on the crack surfaces. For problems of this type the stress

intensity factor for an arbitrary stress acting on the body is obtained from the

following expression which is similar to equation (4)

x 
2

i K, f o(x)G(x)dx (29)

x!

where x! and x2  are positions in the body between which o(x) is the applied

stress prescribed and G(x) is the stress intensity factor for a unit force

acting at the position denoted by x . As an example of the use of such Green's

functions we will consider a radial crack at the edge of a circular hole which is

subjected to a point force on its perimeter. This type of problem is frequently

encountered in considering cracked-holes in pin-loaded lugs. Often the load

transfer between the pin and the hole periphery is not precisely known and it is

necessary to investigate various possible load distributions. Green's function

techniques are ideal for such investigations since each new distribution just

involves a change in o(x) in equation (29).

The Green's function required is the stress intensity factor for a radial

crack of length £ at the edge of a hole of radius R ; a radial force per unit

thickness of P acts at the edge of the hole in a direction which makes an angle

e with the crack (see Fig 12). This stress intensity factor has been obtained

by Tweed and Rooke 23; it is plotted in Fig 12 in non-dimensional form as a

function of 0 for various values of X/R . The usefulness of Green's functions

in describing the response of systems is clearly shown by these results since two

important observations can be made from Fig 12. The first is that the variation

of KI with 0 increases as the crack length decreases, and the second is that
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the maximum rate of variation occurs for short cracks at small values of a

These facts lead to important considerations in fracture mechanics applications.

The first consideration, which is of general importance, is that since

most of the lifetime of a fatigue crack is spent while the crack is short, it is

necessary to know what influences the stress intensity factor of short cracks.

This information is required in order to decide on inspection intervals and

maintenance schedules for structures in services. The second consideration is

specific to the loaded hole configuration since assumptions have usually to be

made about how the load is transferred from the pin to the edge of the hole. It

is often assumed that the load is distributed, in some way, between 61 and 62

where 61 - 00 and e2 - 180 . The rapid variation in Green's function at

small values of 6 means that an incorrect assumption of the load distribution

and the cut-off value 61 can lead to significant errors in the stress intensity

factor. The errors will be largest for the important region of short cracks, so

great care must be exercised in simulating the load transfer between the pin and

the edge of the hole.

7.2 Crack with a strip-yield zone in a stiffened sheet

Green's functions have been used extensively to analyse the effect of cracks

in stiffened structures. The stiffener may be discretely attached 24 eg riveted or

spot welded, or it may be continuously attached 2 5, eg bonded or integrally mach-

ined. Multiple stiffeners have been studied 26 and the effect of attachment
27,28

deflection, eq distortion of adhesives or rivets has been analysed . By using

the same method it is also possible to determine the effect of repair patches
2 9

and the effect of debonding of the adhesive 30 . In this example a recently repor-

ted method 3is used to examine the effect of yielding at the tip of a crack in a

stiffened panel. Such problems arise in the residual static strength assessment

of stiffened structures because of the relatively high loads involved. It is

therefore necessary to consider the effect of yielding in the sheet on the load

concentration in the stiffener and on the rivet loads. We must also consider the

deflection of the attachment points, possible fracture of the attachments and the

crack opening displacement of the crack.

In the configuration analysed, shown in Fig 13, a sheet of modulus of

elasticity E , thickness t and yield stress a is stiffened by a line-ys

stiffener of area A and modulus of elasticity E . The stiffener is attached5 5

to the sheet by N rivets (symmetrically either side of the crack) of elastic

compliance q spaced a distance p apart. A crack of length 2a is located

0 symmetrically across the stiffener and has a strip-yield zone of length c at

-I
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each tip; the sheet is subjected to a uniaxial stress a perpendicular to the

crack. It is assumed that the attachment points are either rigid (Etq = 0) or

undergo an elastic deflection typical of thin sheet riveted structures (Etq = 3).

.8
The stiffened panel in Fig 13 has been analysed using the Green's fLnction

(see also Fig 5a). In solving problems of this type a series of compatibility

equations are set up; these relate the extension of each attachment interval in

the sheet to that of the contiguous interval in the stiffener. This gives a set

of simultaneous equations which may be solved for the unknown attachment forces.

Once these are known the effect of each attachment force may be summed using a

displacement Green's function to obtain the crack opening displacement of the

crack. Convergence of the solution is established by increasing the number of

rivets in the stiffener until there is no effect on the attachment force distri-

bution. On this basis the number of attachments N was fixed at 30 either side

of the crack line.

We consider a problem in which the extent of yielding in the sheet is

limited to a length c equal to the crack length a . In practice this could

correspond to a half-bay crack in a multi-stiffened panel where yielding is not

permitted to extend past the next stiffener either side of the crack. The follow-

ing aspects of the problem have been studied in detail, the effect of attachment

failure on the maximum attachment load, the load concentration in the stiffener

and the crack opening displacement. The influence of increasing the number, n

of failed attachment points is shown in Fig 14. The crack opening displacement 6

and the strip-yield zone length c are both reduced below that for an unstiffened

sheet (60, c0 ) and increase monotonically with increasing n . The ratio of

the maximum permissible applied stress a to the strip-yield stress a appearsys

to be only weakly affected by the number of failed attachment points. The reduc-

tion in a/a show that the panel can carry less load for the same yield zoneys

length. The ratio of the maximum stress a in the stiffener to the remote
m

stiffener stress as decreases by approximately 22%. The ratio of the load P1
in the unbroken attachment nearest to the crack to the remote load in the stiff-

ener a A shows an increase initially followed by a decrease of approximately
s5

37% compared to the initial value.

It is instructive to compare the maximum rivet load and the maximum stress

in the stiffener for the strip-yield crack with that of a crack having the same

length a but without a strip-yield zone at its tip. This is shown in Fig 15,

where it is seen that the effect of yielding is to increase the maximum rivet load

by between 9% and 26% whilst the maximum stress in the stiffener increases by

* 7~ *.
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only 6%. The implications of this are that the effect of yielding in the sheet
is more likely to cause further shear deflection, yield or failure of the rivets

rather than yield or failure of the stiffener. In Fig 16 the effect of attach-

ment deflection on the crack opening displacement 6 , maximum stiffener stress

m and maximum rivet load P are shown as a function of the number of the

failed attachment points. The attachment deflection has the effect of increasing

the crack opening displacement. It is increased by approximately 32% when all

attachments are intact and by 10% when eight are broken. The maximum stiffener

stress is reduced by only about 6% whereas the maximum rivet load is significantly

reduced by approximately 60%, both being relatively insensitive to n . Further

details of the application of Green's functions to cracks with strip-yield zones

in stiffened sheets are available

7.3 A symmetrical crack in a stiffened sheet

The Green's function used in the previous example can be used to examine
32the effect of detailed stiffener design . The panel to be analysed is shown in

Fig 17. This configuration represents a typical aircraft wing panel in which a

crack is initiated at a rivet hole B and the tip A grows across the panel.

The stiffeners of area A are attached to a sheet of thickness t at a spacing5

b with double rows of rivets, diameter d , having a pitch p perpendicular to

the crack and a pitch h parallel to the crack; the modulus of elasticity of the

sheet and the stiffener are identical. Typical values of p, h and b together

with relative area ratio A s/(A s + bt) are given on Fig 17. Since h is a

significant fraction of the bay width b , it may be somewhat unrealistic to

assume, in the analysis, that the stiffener can be concentrated along its centre

line. This assumption will be compared with the more realistic one of concentra-

ting half the total stiffener area along each rivet line. The computational

problem is also made more complex because of the lack of symmetry; the crack is

eccentrically placed and as only one tip moves the eccentricity changes. The

stress intensity factors for crack tips A and B are shown in Fig 18 as a

function of the crack length a . In the singly riveted model the stiffener area

A is assumed concentrated along the stiffener centre line and in the doubly5

riveted model the area A is distributed equally along each rivet line. As can
5

be seen the type of model assumed affects the stress intensity factor and hence
33

the residual static strength . The stress intensity factor is greater for the

single row of rivets than for the double row for all values of a/(b - h/2) for
tip B . For tip A the double row of rivets results in a smaller K I than the

n single row for a/(b - h/2) between 1.03 and 1.33. The implications are that the
0

residual strength and fatigue crack growth rate of the cracked panel will depend
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strongly on the type of attachment, in this case single or double riveting.

Therefore this must be taken into account in the analytic models used to solve

these problems. It is interesting to note that for the doubly riveted stiffener

model the critical crack tip alternates between tip A and tip B as the crack

crosses the panel.

It is also possible to carry out simulated fatigue crack growth rate exper-

ments using the computer. Both tips are allowed to move simultaneously; the

increment of crack growth is determined from the fatigue crack growth law for the

sheet material. Thus realistic comparisons of fatigue life can be made. Calcula-

tions with small crack increments can be time consuming; the Green's function

technique makes it possible to use closed form expressions and thus solution times

are shorter than for many numerical techniques.

8 CONCLUSIONS

The application of Green's function techniques in problems in fracture

mechanics has been described. It has been shown to be a versatile technique for

determining stress intensity factors in a wide variety of problems. Once the

Green's function is known it is only necessary to determine the stress distribu-

tion along the crack site in the uncracked body. The stress analysis of

uncracked bodies is, in general, simpler than the stress analysis of cracked

bodies and many experimental and analytical techniques already exist. Some

methods of obtaining new Green's functions from existing ones have been presented

and further extensions indicated. Several commonly used approximate methods have

been given a rational basis; they have been shown to depend on the existence of

certain approximate Green's fun'ctions. Many important Green's functions have

been collected and some of these have been used to solve practical problems in

fracture mechanics. The range of problems included cracks at loaded holes, the

load transfer in stiffeners due to attachment deflection, attachment failure and

sheet yielding, and the effect of stiffener design on asymmetrically cracked

panels. The Green's function technique is also applicable to problems in three-

dimensions although applications are more limited at present because of the small

number of Green's functions available.

0
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Figs 1 & 2
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Fig 2 The equivalence of stress intensity factors for external boundary loads
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Fig 4a&b
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Fig 5a
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Fig 5c
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Fig 5d
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Fig 6

Fig 6 Diametricully opposed radial cracks subjected to symmetrical point forcem



Fig 7
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Figs 8 & 9
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Fig 10@&b

Fig 10a Point loaded crack at a notch root
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Fig 11
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Fig 12
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Fig 13
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Fig 14&15
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Fig 14 Influence of attachment failure in a stiffened panel
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Fig 15 Comparison of the maximum rivet load and the maximum
stiffener stress for c = a and c = 0
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